Rutgers University: Algebra Written Qualifying Exam January 2018: Problem 5 Solution

Exercise. Let I be a maximal ideal of $\mathbb{Z}[x]$. Prove that $\mathbb{Z}[x]/I$ is a finite field.

Solution.
Theorem: Let
$$R$$
 be a commutative ring with unity and I be an ideal of R . Then
 R/I is a field $\iff I$ is a maximal ideal of R
*To see a detailed proof for why $\mathbb{Z}[x]/I$ is a field, look at the bottom of the document.
 $\implies \mathbb{Z}[x]/I$ is a field
 $\implies char(\mathbb{Z}[x]/I) = 0$ or p for some prime p
Case 1: $char(\mathbb{Z}[x]/I) = p > 0$.
 $\implies \mathbb{Z}[x]/I = \mathbb{Z}_p[x]/I$ where I' is a maximal ideal of $\mathbb{Z}_p[x]$
because if $char(\mathbb{Z}[x]/I) = p$, then $\underbrace{1 + \dots + 1}_{p \text{ times}} = 0$ so $\mathbb{Z}[x]/I \cong \mathbb{Z}_p[x]/I'$
and we know $\mathbb{Z}_p[x]/I'$ must be a field so I' has to be a maximal ideal
 $p \equiv 0 \in F \implies p \in I$
 $\implies (p) \subseteq I$ (since I is an ideal, $\forall r \in R, i \in I$, we have $ir \in I$)
By the third isomorphism theorem: If R is a ring, I an ideal and J an ideal s.t.
 $I \subseteq J \subseteq R$, then
(a) J/I is an ideal of R/I (every ideal has this form)
(b) $(R/I)/(J/I) \cong R/J$
(Note: if we replace J with a subring A then (a) holds resp. subring instead of ideal)
So $I/\langle p \rangle$ is an ideal of $\mathbb{Z}[x]/I = F$
Theorem: For any field K , $K[x]$ is a principal ideal
 $\implies I' = \langle g(x) \rangle$ for some $g(x) \in \mathbb{Z}_p[x]$
Look at deg(g): if deg(g) $= m$, then
 $|\mathbb{Z}_p[x]/I| = |\mathbb{Z}_p[x]/\langle a_m x^m + \dots a_1 x + a_0 \rangle| = \#$ of polys in $\mathbb{Z}_p[x]$ with deg $< m$
(This is because $\mathbb{Z}_p[x]$ is a Euclidean domain) $|\mathbb{Z}[x]/I| = |\mathbb{Z}_p[x]/\langle g \rangle| = p^m$
Case 2: $char(\mathbb{Z}[x]/I) = 0$ (want to get a contradiction)
Choose $f(x) = a_n x^m + \dots + a_n x + a_0 \in I$ of minimal degree
pick prime p s.t. $p \mid a_n$
Since $\mathbb{Z}[x]/I$ is a field and $p \neq 0$, p has an inverse $h(x) \in \mathbb{Z}[x]/I$
 $\implies ph(x) = 1 = 0_F \in I$ (0_F is the elements in I)
 $\implies ph(x) - 1 \in I$
(solution continued on next page)

Solution.

 $\mathbb{Z}[x]$ is not a Euclidean domain but $\mathbb{Q}[x]$ is and $\mathbb{Z}[x] \subset \mathbb{Q}[x]$. Let $d(x) = \gcd(f(x), ph(x) - 1)$ in $\mathbb{Q}[x]$ $\implies d(x) = u(x)f(x) + v(x)[ph(x) - 1]$ for some $u(x), v(x) \in \mathbb{Q}[x]$ Clear the denominators by multiplying by some $r \in \mathbb{Z}$ to get back to $\mathbb{Z}[x]$ $r \cdot d(x) \in \mathbb{Z}[x]$ and $r \cdot d(x) = ru(x)f(x) + rv(x)[ph(x) - 1]$ = u'(x)f(x) + v'(x)[ph(x) - 1] where $u' = ru \in \mathbb{Z}[x]$ and $v' = rv \in \mathbb{Z}[x]$ Since $u', v' \in \mathbb{Z}[x]$ and $f(x), [ph(x) - 1] \in I$, $u'(x)f(x) \in I$ and $v'(x)[ph(x) - 1] \in I$ $\implies rd(x) = u'f(x) + v'[ph(x) - 1] \in I$ Since $d(x) = \gcd(f(x), ph(x) - 1)$, clearly $d(x) \mid f(x)$ $\implies rd(x) \mid rf(x) \text{ and } rd(x) \in I \text{ and } \deg(rf(x)) = \deg(f(x)) \text{ minimal}$ $\implies \deg(d(x)) = \deg(f(x)) \text{ and } ad(x) = f(x) \text{ for some } a \in \mathbb{Q} \setminus \{0\}$ \implies In $\mathbb{Q}[x]$, $d(x) \mid [ph(x) - 1]$ so b(x)d(x) = ph(x) - 1 for some $b(x) \in \mathbb{Q}[x]$ $\implies \frac{1}{a}b(x)f(x) = ph(x) - 1$ $\implies \tilde{f}(x) \mid [ph(x) - 1] \text{ in } \mathbb{Q}[x]$ So, $f(x) \mid [ph(x) - 1 \text{ in } \mathbb{Z}[x]]$ $\implies ph(x) - 1 = f(x)q(x)$ for some $q \in \mathbb{Z}[x]$ $\implies -1 \equiv f(x)g(x) \mod p$ $\implies f(x)(-g(x)) \equiv 1 \mod p$ $(a_n x^n + \dots + a_1 x + a_0)(b_m x^m + \dots + b_1 x + b_0) \equiv 1 \mod p$ $b_m \equiv 0 \mod p$. to have zero as a leading coefficient $b_0 \equiv 0 \mod p$ $\implies g \equiv 0 \mod p$ \implies not a unit! this is a contradiction!

Proof that $\mathbb{Z}[x]/I$ is a field

 $\mathbb{Z}[x]$ is a commutative ring with unity, and $\mathbb{Z}[x]/I$ is also a commutative ring with unity. Also if I is a proper ideal of $\mathbb{Z}[x]$ then $\mathbb{Z}[x]/I$ is not the trivial ring. Therefore, it suffices to prove that every nonzero element in $\mathbb{Z}[x]/I$ has a multiplicative inverse.

Let I be a maximal ideal of $\mathbb{Z}[x]$ and $a \notin I$. Let J be the ideal $J = \{ab + x | b \in \mathbb{Z}[x], x \in I\}$. Then, since I is a maximal ideal and $I \subsetneq J$, it follows that $J = \mathbb{Z}[x]$. $\implies \exists b_0 \in \mathbb{Z}[x] \text{ and } x_0 \in I \text{ s.t. } 1 = ab_0 + x_0 \text{ and } 1 - ab_0 = -x_0 \in I$ i.e. $\forall a \notin I, \exists b \in \mathbb{Z}[x] \text{ s.t.}$ $1 - ab \in I.$ $\Rightarrow \forall a \in \mathbb{Z}[x] - I, \exists b \in \mathbb{Z}[x] \text{ s.t.}$ (I + a)(I + b) = I + 1

 \implies Every nonzero element of $\mathbb{Z}[x]/I$ has a multiplicative inverse. Thus $\mathbb{Z}[x]/I$ is a field.