Rutgers University: Algebra Written Qualifying Exam

January 2018: Problem 5 Solution

Exercise. Let I be a maximal ideal of $\mathbb{Z}[x]$. Prove that $\mathbb{Z}[x] / I$ is a finite field.

Solution.

Theorem: Let R be a commutative ring with unity and I be an ideal of R. Then

$$
R / I \text { is a field } \Longleftrightarrow I \text { is a maximal ideal of } R
$$

*To see a detailed proof for why $\mathbb{Z}[x] / I$ is a field, look at the bottom of the document.
$\Longrightarrow \mathbb{Z}[x] / I$ is a field
$\Longrightarrow \operatorname{char}(\mathbb{Z}[x] / I)=0$ or p for some prime p
Case 1: $\operatorname{char}(\mathbb{Z}[x], I)=p>0$.
$\Longrightarrow \mathbb{Z}[x] / I=\mathbb{Z}_{p}[x] / I^{\prime}$ where I^{\prime} is a maximal ideal of $\mathbb{Z}_{p}[x]$
because if $\operatorname{char}(\mathbb{Z}[x] / I)=p$, then $\underbrace{1+\cdots+1}_{p \text { times }}=p \equiv 0$ so $\mathbb{Z}[x] / I \cong \mathbb{Z}_{p}[x] / I^{\prime}$
and we know $\mathbb{Z}_{p}[x] / I^{\prime}$ must be a field so I^{\prime} has to be a maximal ideal
$p \equiv 0 \in F \Longrightarrow p \in I$
$\Longrightarrow\langle p\rangle \subseteq I$ (since I is an ideal, $\forall r \in R, i \in I$, we have $i r \in I$)
By the third isomorphism theorem: If R is a ring, I an ideal and J an ideal s.t.
$I \subseteq J \subseteq R$, then
(a) J / I is an ideal of R / I (every ideal has this form)
(b) $(R / I) /(J / I) \cong R / J$
(Note: if we replace J with a subring A then (a) holds resp. subring instead of ideal)
So $I /\langle p\rangle$ is an ideal of $\left.\mathbb{Z}[x] /\langle p\rangle=\mathbb{Z}_{p}[x]\right]$
$\langle p\rangle=\{p f(x): f(x) \in \mathbb{Z}[x]\}$
And $(\mathbb{Z}[x] /\langle p\rangle) /(I /\langle p\rangle) \cong \mathbb{Z}[x] / I=F$
Theorem: For any field $K, K[x]$ is a principal ideal domain
$\Longrightarrow \mathbb{Z}_{p}[x]$ is a PID so I^{\prime} is a principal ideal
$\Longrightarrow I^{\prime}=\langle g(x)\rangle$ for some $g(x) \in \mathbb{Z}_{p}[x]$
Look at $\operatorname{deg}(g)$: if $\operatorname{deg}(g)=m$, then
$\left|\mathbb{Z}_{p}[x] / I^{\prime}\right|=\left|Z_{p}[x] /\left\langle a_{m} x^{m}+\ldots a_{1} x+a_{0}\right\rangle\right|=\#$ of polys in $\mathbb{Z}_{p}[x]$ with $\operatorname{deg}<m$ (This is because $\mathbb{Z}_{p}[x]$ is a Euclidean domain) $|\mathbb{Z}[x] / I|=\left|\mathbb{Z}_{p}[x] /\langle g\rangle\right|=p^{m}$

Case 2: $\operatorname{char}(\mathbb{Z}[x] / I)=0$ (want to get a contradiction)
Choose $f(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0} \in I$ of minimal degree
pick prime p s.t. $p \mid a_{n}$
Since $\mathbb{Z}[x] / I$ is a field and $p \neq 0, p$ has an inverse $h(x) \in \mathbb{Z}[x] / I$

$$
\begin{aligned}
& \Longrightarrow p h(x)=1 \\
& \Longrightarrow p h(x)-1=0_{F} \in I \quad\left(0_{F} \text { is the elements in } I\right) \\
& \Longrightarrow p h(x)-1 \in I
\end{aligned}
$$

(solution continued on next page)

Solution.

$\mathbb{Z}[x]$ is not a Euclidean domain but $\mathbb{Q}[x]$ is and $\mathbb{Z}[x] \subset \mathbb{Q}[x]$.
Let $d(x)=\operatorname{gcd}(f(x), p h(x)-1)$ in $\mathbb{Q}[x]$
$\Longrightarrow d(x)=u(x) f(x)+v(x)[p h(x)-1]$ for some $u(x), v(x) \in \mathbb{Q}[x]$
Clear the denominators by multiplying by some $r \in \mathbb{Z}$ to get back to $\mathbb{Z}[x]$
$r \cdot d(x) \in \mathbb{Z}[x]$ and

$$
\begin{aligned}
r \cdot d(x) & =r u(x) f(x)+r v(x)[p h(x)-1] \\
& =u^{\prime}(x) f(x)+v^{\prime}(x)[p h(x)-1] \quad \text { where } u^{\prime}=r u \in \mathbb{Z}[x] \text { and } v^{\prime}=r v \in \mathbb{Z}[x]
\end{aligned}
$$

Since $u^{\prime}, v^{\prime} \in \mathbb{Z}[x]$ and $f(x),[p h(x)-1] \in I$,

$$
\begin{aligned}
u^{\prime}(x) f(x) & \in I
\end{aligned} \quad \text { and } \quad v^{\prime}(x)[p h(x)-1] \in I
$$

Since $d(x)=\operatorname{gcd}(f(x), p h(x)-1)$, clearly $d(x) \mid f(x)$
$\Longrightarrow r d(x) \mid r f(x)$ and $r d(x) \in I$ and $\operatorname{deg}(r f(x))=\operatorname{deg}(f(x))$ minimal
$\Longrightarrow \operatorname{deg}(d(x))=\operatorname{deg}(f(x))$ and $a d(x)=f(x)$ for some $a \in \mathbb{Q} \backslash\{0\}$
$\Longrightarrow \operatorname{In} \mathbb{Q}[x], d(x) \mid[p h(x)-1]$ so $b(x) d(x)=p h(x)-1$ for some $b(x) \in \mathbb{Q}[x]$
$\Longrightarrow \frac{1}{a} b(x) f(x)=p h(x)-1$
$\Longrightarrow f(x) \mid[p h(x)-1]$ in $\mathbb{Q}[x]$
So, $f(x) \mid[p h(x)-1$ in $\mathbb{Z}[x]$

$$
\left.\begin{array}{rl}
\Longrightarrow p h(x)-1 & =f(x) g(x) \quad \text { for some } g \in \mathbb{Z}[x] \\
\Longrightarrow-1 & \equiv f(x) g(x) \bmod p \\
\Longrightarrow f(x)(-g(x)) & \equiv 1 \quad \bmod p \\
\left(a_{n} x^{n}+\cdots+a_{1} x+a_{0}\right)\left(b_{m} x^{m}+\cdots+b_{1} x+b_{0}\right) & \equiv 1 \quad \bmod p \\
b_{m} \equiv 0 \quad \bmod p \\
\Longrightarrow \quad \vdots & \\
b_{0} \equiv 0 \quad \bmod p
\end{array}\right\} \text { to have zero as a leading coefficient } \quad \begin{aligned}
& \Longrightarrow g \equiv 0 \quad \bmod p
\end{aligned}
$$

\Longrightarrow not a unit! this is a contradiction!

Proof that $\mathbb{Z}[x] / I$ is a field
$\mathbb{Z}[x]$ is a commutative ring with unity, and $\mathbb{Z}[x] / I$ is also a commutative ring with unity. Also if I is a proper ideal of $\mathbb{Z}[x]$ then $\mathbb{Z}[x] / I$ is not the trivial ring.
Therefore, it suffices to prove that every nonzero element in $\mathbb{Z}[x] / I$ has a multiplicative inverse.
Let I be a maximal ideal of $\mathbb{Z}[x]$ and $a \notin I$.
Let J be the ideal $J=\{a b+x \mid b \in \mathbb{Z}[x], x \in I\}$.
Then, since I is a maximal ideal and $I \subsetneq J$, it follows that $J=\mathbb{Z}[x]$.
$\Longrightarrow \exists b_{0} \in \mathbb{Z}[x]$ and $x_{0} \in I$ s.t. $1=a b_{0}+x_{0}$ and $1-a b_{0}=-x_{0} \in I$ i.e. $\forall a \notin I, \exists b \in \mathbb{Z}[x]$ s.t.

$$
1-a b \in I
$$

$\Longrightarrow \forall a \in \mathbb{Z}[x]-I, \exists b \in \mathbb{Z}[x]$ s.t.

$$
(I+a)(I+b)=I+1
$$

\Longrightarrow Every nonzero element of $\mathbb{Z}[x] / I$ has a multiplicative inverse.
Thus $\mathbb{Z}[x] / I$ is a field.

